How to plot linear regression with two categorical predictors in R? -
i have data-set looks in short version:
> means_rt snum realratio instratio rt 3 0 0 358.9782 4 50 30 314.2908 5 30 30 330.7382 6 0 0 335.9542 7 30 50 327.9859 8 50 50 302.7551 9 30 30 326.9188 10 30 30 343.7648 11 0 0 384.5667 12 50 30 319.3677 13 30 50 358.409 14 30 30 300.7474
where snum participant number, realratio , instrratio categorical variables , rt (reaction time) numericle variable. ran regression model:
fit1 <- lm(formula = rt ~ realratio + instratio + realratio*instratio, data = means_rt) summary(fit1) call: lm(formula = rt ~ realratio + instratio + realratio * instratio, data = means_rt) residuals: min 1q median 3q max -85.206 -22.920 -0.381 21.107 105.713 coefficients: estimate std. error t value pr(>|t|) (intercept) 333.807279 9.019529 37.009 <2e-16 *** realratio 0.726752 0.476883 1.524 0.131 instratio -0.026615 0.471673 -0.056 0.955 realratio:instratio -0.004032 0.015138 -0.266 0.791 signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 residual standard error: 37.48 on 91 degrees of freedom multiple r-squared: 0.06734, adjusted r-squared: 0.03659 f-statistic: 2.19 on 3 , 91 df, p-value: 0.0946
and have tried plot regression failed:
ggplot(means_rt, aes(x= realratio, y=rt, fill=instratio)) + geom_bar(binwidth = 1.5, alpha = .5, position = "identity")
how should plot linear regression 2 categorical predictors: realratio , instratio?
Comments
Post a Comment